Link to the description of the task: https://leetcode.com/problems/the-earliest-moment-when-everyone-become-friends/
Straightforward Solution:
using System; | |
using System.Collections.Generic; | |
using System.Linq; | |
namespace ConsoleApp1 | |
{ | |
class Program | |
{ | |
static void Main(string[] args) | |
{ | |
var log = new FrienshipRecord[] { | |
new FrienshipRecord() { Time = 0, Member1 = "a", Member2 = "b" }, | |
new FrienshipRecord() { Time = 1, Member1 = "c", Member2 = "d" }, | |
new FrienshipRecord() { Time = 2, Member1 = "d", Member2 = "e" }, | |
new FrienshipRecord() { Time = 3, Member1 = "f", Member2 = "e" }, | |
new FrienshipRecord() { Time = 4, Member1 = "a", Member2 = "f" }, | |
new FrienshipRecord() { Time = 5, Member1 = "c", Member2 = "a" }, | |
}; | |
var socialNetwork = new List<List<string>>(); | |
int totalMembersCount = 6; | |
foreach (var record in log) | |
{ | |
var group1 = socialNetwork.FirstOrDefault(g => g.Contains(record.Member1)); // O(n) | |
var group2 = socialNetwork.FirstOrDefault(g => g.Contains(record.Member2)); // O(n) | |
switch (group1 is null, group2 is null) | |
{ | |
case (false, false) when group1 == group2: | |
// do nothing | |
break; | |
case (false, false) when group1 != group2: | |
group1.AddRange(group2); // O(l) | |
socialNetwork.Remove(group2); // O(1) | |
break; | |
case (false, true): | |
group1.Add(record.Member2); // O(1) or O(k) | |
break; | |
case (true, false): | |
group2.Add(record.Member1); // O(1) or O(k) | |
break; | |
case (true, true): | |
socialNetwork.Add(new List<string>() { record.Member1, record.Member2 }); // O(2) | |
break; | |
} | |
// If the social network contains only one group | |
// and also the grop contains all the members | |
if (socialNetwork.Count == 1 && socialNetwork[0].Count == totalMembersCount) // O(1) | |
{ | |
Console.WriteLine("All members were friends at " + record.Time); | |
return; | |
} | |
} | |
Console.WriteLine("Not all of the members are friends yet"); | |
} | |
} | |
internal struct FrienshipRecord | |
{ | |
internal int Time; | |
internal string Member1; | |
internal string Member2; | |
} | |
} |
Time Complexity Analysis:
List.Add(newFriend) -> O(1) if Count is less than Capacity, otherwise O(k) where k is Count
List.AddRange(anotherList) -> O(l) if Capacity is less than Count plus l, otherwise O(Count + l) where l is anotherList.Count
List.Contains(member) -> O(k) where k is Count
Loop:
- Take a record from the log
- Get groups ids for each member {List.Contains(member)} -> 2 * O(n)
- If the ids are the same then do nothing
- If one of the ids is null then add the member {List.Add(newFriend) -> O(1) or O(k)
- If both are null then create new Group {new List{a, b}} -> O(2)
- If not null and different then merge groups {List.AddRange} -> O(l)
- If the base List.Count is 1 and List[0].Count equals n then the current record is the answer
The total complexity is m * O(n). Also, m must be equal or larger then log(n) to make all members connected. This way the solution complexity is at least O(log(n) * n)
Two problems with this method:
- Getting a group id for a member is too slow (O(n))
- Merging groups is slow (O(n)) in the worst-case scenario
Straightforward Solution with HashSet:
using System; | |
using System.Collections.Generic; | |
using System.Linq; | |
namespace ConsoleApp1 | |
{ | |
class Program | |
{ | |
static void Main(string[] args) | |
{ | |
var log = new FrienshipRecord[] { | |
new FrienshipRecord() { Time = 0, Member1 = "a", Member2 = "b" }, | |
new FrienshipRecord() { Time = 1, Member1 = "c", Member2 = "d" }, | |
new FrienshipRecord() { Time = 2, Member1 = "d", Member2 = "e" }, | |
new FrienshipRecord() { Time = 3, Member1 = "f", Member2 = "e" }, | |
new FrienshipRecord() { Time = 4, Member1 = "a", Member2 = "f" }, | |
new FrienshipRecord() { Time = 5, Member1 = "c", Member2 = "a" }, | |
}; | |
var socialNetwork = new List<HashSet<string>>(); | |
int totalMembersCount = 6; | |
foreach (var record in log) | |
{ | |
var group1 = socialNetwork.FirstOrDefault(g => g.Contains(record.Member1)); | |
var group2 = socialNetwork.FirstOrDefault(g => g.Contains(record.Member2)); | |
switch (group1 is null, group2 is null) | |
{ | |
case (false, false) when group1 == group2: | |
// do nothing | |
break; | |
case (false, false) when group1 != group2: | |
MergeGroups(socialNetwork, group1, group2); | |
break; | |
case (false, true): | |
group1.Add(record.Member2); | |
break; | |
case (true, false): | |
group2.Add(record.Member1); | |
break; | |
case (true, true): | |
socialNetwork.Add(new HashSet<string>() { record.Member1, record.Member2 }); | |
break; | |
} | |
// If the social network contains only one group | |
// and also the grop contains all the members | |
if (socialNetwork.Count == 1 && socialNetwork[0].Count == totalMembersCount) | |
{ | |
Console.WriteLine("All members were friends at " + record.Time); | |
return; | |
} | |
} | |
Console.WriteLine("Not all of the members are friends yet"); | |
} | |
private static void MergeGroups( | |
List<HashSet<string>> socialNetwork, | |
HashSet<string> group1, | |
HashSet<string> group2) | |
{ | |
if (group1.Count > group2.Count) | |
{ | |
group1.UnionWith(group2); | |
socialNetwork.Remove(group2); | |
} | |
else | |
{ | |
group2.UnionWith(group1); | |
socialNetwork.Remove(group1); | |
} | |
} | |
} | |
internal struct FrienshipRecord | |
{ | |
internal int Time; | |
internal string Member1; | |
internal string Member2; | |
} | |
} |
Time Complexity Analysis:
HashSet.Add(newFriend) -> O(1) if Count is less than Capacity, otherwise O(k) where k is Count
HashSet.UnionWith(anotherHashSet) -> O(l) if Capacity is less than Count plus l, otherwise O(Count + l) where l is anotherHashSet.Count
HashSet.Contains(member) -> O(1)
Loop:
- Take a record from the log
- Get groups ids for each member {HashSet.Contains(member)} -> 2 * O(1)
- If the ids are the same then do nothing
- If one of the ids is null then add the member {HashSet.Add(newFriend) -> O(1) or O(k)
- If both are null then create new Group {new HashSet{a, b}} -> O(2)
- If not null and different then merge groups {HashSet.UnionWith} -> O(l)
- If the base List.Count is 1 and List[0].Count equals n then the current record is the answer
The total complexity is m * O(l). It is possible to minimize l by comparing HashSet.Count and anotherHashSet.Count, and then adding smallest to the biggest.
This way the total complexity is about O(m * log(n)) which makes the answer acceptable.